Nanoparticle Electromagnetic Properties for Sensing Applications
نویسندگان
چکیده
Nanoparticles play a crucial role in biomedical and sensing applications. In this paper the design of non-spherical gold nanoparticles, operating in the near infrared and visible regime, is proposed. The structures consist of metallic resonating inclusions of different shapes embedded in a dielectric environment. Different geometries, such as cube, elliptical cylinder and rod are considered. The main purpose of this study is to develop new analytical formulas useful in the nanoparticle design for specific biomedical and sensing applications. These analytical models are developed in order to describe the electromagnetic behavior of the nanoparticles in terms of resonant wavelength position, magnitude and amplitude width for absorption and scattering cross section. The obtained results are compared to the numerical ones, performed by full-wave simulations, and to the experimental values existing in literature. A good agreement among analytical, experimental and numerical results was obtained. Then, the structure is analyzed in terms of sensitivity properties. Exploiting the proposed analytical models, it is possible to design the nanostructures with the desired electromagnetic properties. The results show that these structures can be successfully applied for sensing applications.
منابع مشابه
Size Dependence of the Plasmon Ruler Equation for Two-Dimensional Metal Nanosphere Arrays
The optical properties of fcc metal (gold and silver) nanostructures have recently been the focus of intense scientific study. The driving force for the interest is because, upon interaction with incident electromagnetic waves, such as light, these metal nanostructures exhibit localized surface plasmon resonance (LSPR). 4 The LSPR results in both an enhancement of the near-field electromagnetic...
متن کاملCurrent achievements of nanoparticle applications in developing optical sensing and imaging techniques
Metallic nanostructures have recently been demonstrated to improve the performance of optical sensing and imaging techniques due to their remarkable localization capability of electromagnetic fields. Particularly, the zero-dimensional nanostructure, commonly called a nanoparticle, is a promising component for optical measurement systems due to its attractive features, e.g., ease of fabrication,...
متن کاملLocalized surface plasmon resonance spectroscopy and sensing.
Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic stud...
متن کاملSynthesis of a gold nanoparticle dimer plasmonic resonator through two-phase-mediated functionalization.
We report that Au nanoparticles, ligand-exchanged with a thiol ligand at the liquid-liquid interface, were dimerized using an N,N'-diisopropylcarbodiimide-mediated amide bond formation. This dimerization of 60 nm sized Au nanoparticles achieved 24% overall yield and was visually confirmed by transmission electron microscopy as well as by scanning electron microscopy images. The resultant electr...
متن کاملUse of laser-triggered gold nanoparticle-grafted dual light and temperature-responsive polymeric sensor for the recognition of thioguanine as anti-tumor agent
Objective(s): Today, there is an urgent need for improved sensor materials for drug sensing and effective monitoring and interventions in this area are highly required to struggle drug abuse. The present study aimed to synthesize a thioguanine-responsive sensor based on a nanocomposite consisting of AuNP-grafted light- and temperature-responsive poly butylmethacrylate-co-acrylamide-co-methacryl...
متن کامل